0 The PVEout project within the European 5™ framework, NRU
T. Dyrby, 06-07-03

p.1

The pipeline program for PVElab

1

2

[¢V)

PARTIAL VOLUME ERROR .ooeiiiiii ettt 3
THE PIPELINE PROGRAM ..coi ittt eetbare e abrrae e e 4
2.1 THE USER-INTERFACE ..cceeeiiiiittiieeie e e e e eeseiieeeeeeeaeeesesnnstaneeesaaseesanssnseeeeaassesannns 4
2.2 THE PROJECT ..eeiiietttttteeeeeeeeesisabareeesesesssesssbsssessasesssasssbaneessssssasassssenssesssssannes 7
221 RESLIICtIONS USING PrOJECE ..ottt ettt e e e eaa e e e e saraee s 7
2.2.2 S Y172 =110 T 10 [0SO 8
2.2.3 The ProjeCt fIEIAeeieiieee e e 9
224 The pipelinefield and sSUb-fieldS.........ccoovieieiiciie e, 10
2.25 The taskDone field and its SUb-fieldS.........ccceeereeeceeeccieeccee e, 12
2.2.6 The handIESFIEl.......cooieeeicee e 13
2.2.7 B (SN T 01 {00 1= o [14
REALISING THE PIPELINE PROGRAMcoooittteeee et 14
3.1 MATLAB AND THE PIPELINE PROGRAMuutiriiiieeeeeeeiitreneeeeeeeeessnnnseeeeeaaens 15
3.2 CONNECTION DIAGRAM OF THE PIPELINE PROGRAMcoooevvrrereeeeeeesennsrenenss 15
3.3 A FUNCTION WRAPPER....cciitiiiicttttetieeeeesesintseeeeeeassesssnssaseeesasssesassssssneeeaanns 16
34 A CONFIGURATOR WRAPPER........ccttttttereieeeriiiiisrrseeeeeessessssssssneeesssssasssssssenes 17
3.5 N YN = ST 17
35.1 (01110 4 TR 17
3.5.2 (02 1< 03 (O [| R 17
3.6 THEMAINGUIttt e e s s e sebbr b e e e e e e e e s sennns 18
3.7 PREPARATION: A TASK GUIDELINE ..eeeeeeeeieicitireeeeeeeeeeeennreeeeeeesseessnssseneeeaeens 18
3.8 PREPARATION: A METHOD GUIDELINEcccetturrrtieeereieirnreneeesesesessnsssseneeesens 19
[KO YA 1 20
4.1 HOW TO WRITE A FUNCTION WRAPPERccctttttiitieeeeeiiinnrnreeesesssesssssssseesesenes 20
4.2 HOW TO WRITE A CONFIGURATOR WRAPPER ...t 22
4.3 HOW TO MAKE A SET=UP FILEuuutttriieeeeeiiiiitireeeeee e e e ssissraneeesesssesssssssnssessnns 22
4 FILE FORMATS AND DIRECTORIES. ...uuieeeeeieieeeeeeeeee s s s e 25

0 The PVEout project within the European 5™ framework, NRU
T. Dyrby, 06-07-03 p. 2

The pipeline program for PVElab

1 Partial Volume Error

Intro.
What is PVE project
Groups implementation of methods. Tasksin a PV E correction process.

Set-up at pipeline w. given methods, log all necessary information “structure

, and control a process...

One success criteria for the PVEout (Partial Volume Effect) project within the
European 5" framework is to make a common interface for a product that can do a
full partial volume correction of a PET/SPECT scan using a high resolution MR scan.
At the Firenze meeting, Italy, mid November 2002, the partners agreed to make a
proposal on how the different methods in the PVE process could be integrated
through a user-friendly graphic user interface (GUI). Further, the partners agreed in
using the Matlab program from MathWorks Inc. for implementing the GUI.

A magjor advantage using Matlab as platform is the non-dependency of the operating
system (Linux or Windows), the worldwide use of Matlab within medical community,
and an easy way to realize the GUI.

The Copenhagen group, NRU, would make the preliminary description. The result is
given in the following document where a full (preliminary) description on how an
user friendly interface could be realized, code be written and, different methods
integrated. Further a proposed prototype of a GUI is created in Matlab.

0 The PVEout project within the European 5™ framework, NRU
T. Dyrby, 06-07-03 p. 3

The pipeline program for PVElab

2 The pipeline program

In the following a pipeline program is introduced. The pipeline program offers an
easy way to set-up a pipeline containing one or more stepsin a user-defined order. A
step in the pipeline is refereed as atask and within each task there exist none or more
programs each realising the given. Such a program for atask is refereed as a method.

The pipeline program is based on a documented data structure where information of
theindividua pipeline is stored. The data structure can be seen as a read/writeable
database refereed as the project for the actual pipeline. For each project a unique
working directory is automatically created, where files generated through a pipeline
are stored. In thisway files within different projects are not mixed up and more
pipeline programs can be executed at the same time.

A user-friendly interface gives a good overview of a project and makes the pipeline
program easy-to-use. Some features are as followed:

- to select other of available methods than default selected

- tosave user defined settings for a actual pipeline

- toload and continue a not finished project

- inspect used settings and other information for a finished project

The data structure is independent of the user-interface, which means that the pipeline
program in principle can be executed without any user-interface (GUI). This gives the
possibility to run the pipeline program on clusters of computers. Of cause this feature
expect that methods in the actual pipeline are fully automatic and either does not need
any user-interface.

To set-up a pipeline two-steps must be done:

1) Each method must interface the pipeline program through a simple wrapper that
shields a method from the pipeline program.

2) Create a set-up file defining execution order of the tasks and needed information
of the different methods. Guideline to full-fill and examples are given.

Because ...
A user implementing a new pipeline can stay focused on the given two steps, if errors
are found/detected.

2.1 The user-interface
Users using a already existing set-up of a pipeline.

0 The PVEout project within the European 5™ framework, NRU
T. Dyrby, 06-07-03 p. 4

The pipeline program for PVElab

Task buttons

) PYE Lab (username) d9658M\rSag.img | alto2_IC
File Start Tools View Help
StZ Ite mal’k V) FileLoad Y Registration Y Segmentation Y PVE correction Y Atlas Y Reslicing \
~ Method r—Site wind

Pop up menu

. "

\f
E
5
‘

Options

Inssgefile:wll02,C inm

i;

Info it

Information

Load imagefiles in different
formats and convert to the
Analyze file format

Show here

WAagania: dSESEMprSag.img

- Result image unknown...will try making some.

(T ask: FileLoad, Method: fileload)
___Time stamp: 23.16.2.7.2003 (mm.hh.dd.mm.yyyy) (T ask: Others, Method: Show results)
- CheckOut: OK, Active. -(Task: Others, Method: Show results)

Log bar1

(KA

Figurel

2. Select method
f1. Select task in pop up menu.

3. Press Run

) PVE Lab (username) M658MprSag.img | all02 m

) PVE Lab (username) d9658MprSag.img | alt m
File Start Tools View F\QP

File Start Tools View Help

/ /
/
(/ FileLoad Registration \/ Segmentation \ v FileLoad \(Registration A Segmentation | |
— Method —l I—Slle [L ———— — Method —Site’ AiNdow ———
fuo £ [iPs ~]

Flun[

. run selected method

| [

INfOrmMation e——
[Usel selected points (min. 3] in

Information

Manually coregistration by using
image overlay

both scans are registrated

Figure2

0 The PVEout project within the European 5™ framework, NRU

T. Dyrby, 06-07-03 p.5

The pipeline program for PVElab

‘:’;J’tlon S @ ﬂ Options

Mew project
Load project
Save project

Load MACRC
Save as MACRO

Defauilt settings

Quit

Hélp

=(ofx]

Filz
(FileLoad I Registration ‘h{ Segmentation wr P%E correction ‘h(Aflas

wr Feslicing w

— Method

Dptio Reg ation 100 =) S

- Preprocessing

1o
""] Flur Thiz example shows options design
W S " Echaon
_@; © Warp lines

Infarmatior

Manually coregistration by
image overlay

0 Limit rratris: width

Default

Load defaults Apply | Cancel |

- LoadPioject: programfile -» runProject_wrapper, OF! --[Tazk: Others, Method: Run project]

- LoadPraject: programfile -» defaultSettings_wrapper, Ok [T ask: Others, Method: Default settings)
- LoadProject: programfile -» main_wrapper, OK! ---[Task: PVELahébout, Method: PVE Lab)

[

Figure3

>

[Fiie, Stert Took Mew Help File [Staety Taols biew Hep Rl Starl [Tool, tiew Help File Start Took [iew, Help

Ru’r‘\gpm]ect PETsim ! Bromse2D
Coritinue projact Browse3D

Tnspect

Figure4

Fila Start Tools Vlaw|Helph

DoEurrenhEtion:

About Dema

The PVElab offer methods to do a PVE correction of alow resolution PET or SPECT
scan (functional image) given a high resolution MR scan (structural image).

This demo presents our ideas behind the PV Elab design. This document explains how
the design and layout of the GUI should work.

The PVElab GUI is build about tasks. Each task islinked to atask button in the top.
Each task can be accomplished by a number of methods. Registration for example can
be done by 110, IPS etc.

T. Dyrby, 06-07-03

0 The PVEout project within the European 5™ framework, NRU

p. 6

The pipeline program for PVElab

The results of a method are displayed in the right frame. The ideawith PVElab is that
it displays the selected method and offers a possibility to quickly inspect the results.
If more interaction from the user is required, a new figure can be created.

The method is selected from the pop up menu. The info field displays cluesto guide
the user through all the tasks. When amethod is selected a short method description is
displayed in theinfo field.

A logisaso created, so you can see and document how your results were obtained.

Y ou can keep an eye on the log because it is also displayed at the bottom of the
figure.

Pressing the *Options’ button can configure each method. In the optionsfigureitis
possible to reset the method to default settings.

Thetasks display their state by a small symbol. The states are I’ m next - Completed
- Error .

Y ou can save all your work in a project. This project contains al the settings for all
tasks. When you load your project you can change some options and run the
calculations again.

A summary of the current menu structure:

2.2 The project

As introduced each project contain a data structure where all information for a
pipeline are stored. Information regards settings for the tasks and available methods in
the pipeline, results, log information and status of the pipeline process.

In the following section all fields of the data structure in a project will be explained
shortly. This section isintended for programmers who want to implement new tasks
and/or methods. All so users who want a deeper understand of the data structure or
like to retrieve extended information from the project.

How to write wrapper functions that interface to the pipeline program and setting up
pipelines, see section Error! Reference source not found..

2.2.1 Restrictions using project

The data structure of aproject isin general aREAD-ONLY structure, unless elseis
given and afield is marked with a start (*) in the following sections. A pipeline in the
pipeline program is a collection of different tasks and methods implemented by
different programmers. It is therefore obviously, not respecting given restrictions may
cause to instability, not generality and misunderstanding using the pipeline program.

0 The PVEout project within the European 5™ framework, NRU
T. Dyrby, 06-07-03 p. 7

The pipeline program for PVElab

Do not store larges data amounts in the project such as images. Matlab controls the
project where pointers not are available. The data structure is therefore transferred
between functions, each making a copy of the project. This can make the pipeline
program slow and using unnecessary memory if lot of datais stored in the project.

2.2.2 Syntax and indices

To navigate in a project one must understand the basic syntax of a data structure and
used indices.

A data structureis build up of blocks containing one or more fields of those illustrated
in Figure 5.

Type of fields:

- fieldO: Contain one or more given type of fields: fieldO to field4.

- field1l: Onevariable of type string, number or afield.

- fidld2(index): Vector a specific type of variables, as numbers or strings with the
same length.

- field3{index} :Vector of none-specific type of variables or fields.

- fidd{index1,index2}: Asfield3, but with an extradimension.

= field1

= field2(index)
field() ——

= field3{index}

= field4{index1 ,index}

Figure5

To accessfieldl to field4 in structure fieldO do:
Reading afield into variable A:
A=field0.field1;
A=field0.field2(index);

Writing variable to afield:
fieldO.field1=A,
field0.field2(index)=A,;

Used indices navigating a project in the pipeline program:

- Index: not a specific index.

- Taskindex: Selected task of a defined order in the pipeline. First task is 1

- Methodlndex: Selected method of available methods in atask: First method is 1
- Modalitylndex: Selected modality of available modalities: First modality is 1

- Imagel ndex: Selected image of available images:. First imageis 1 (default)

- Functionl ndex: Selected function of available functions: First functionis 1

0 The PVEout project within the European 5™ framework, NRU
T. Dyrby, 06-07-03 p. 8

The pipeline program for PVElab

2.2.3 The project field

The project has four fields each containing a structure, which are explained in the
following sections.

— pipeling -

PIOJECE e taskDone{Taskindesx} ...

= hiandles -

— sy sitfo -

Figure 6

Fields of the project:

- pipédline: Contain both settings for the used pipeline and status information of the
pipeline process.

- taskDong{TaskIndex}: Information of a finished tasks in the pipeline process.

- Handles: Handles/pointers to used figures in the pipeline program.

- syslnfo: General information of used directories and files.

0 The PVEout project within the European 5™ framework, NRU
T. Dyrby, 06-07-03 p. 9

The pipeline program for PVElab

2.2.4 The pipeline field and sub-fields

The pipeline field contain all information regarding set-up and process status and
control of apipeline. The field taskSetup{ Taskl ndex,Methodindex} contain a sub-field
of settings for the given method of atask. This task{,}-field sets up a given pipeline
and istherefore refereed as a set-up file. The set-up fileis an input parameter when
starting the pipeline program.

The other fieldsin the pipeline field are mainly process status and control of a
pipeline.

The pipelinefield is shown in Figure 7 and a short description of each field is given in
the following.

= Imagelndex|index)
= fask

= imageModality{Modalitylndex} L method
= method_name

= lastTaskindex{arderindex) L function narme

= statusTask(Taskindesx) function_wrapper

L description
wer PIPENNE m—taskSetupiTaskindes Methodinde: | e requireTaskindes

= prefix

= defaultFipelinel Taskindex) L documentation
= who_did

=serFipeline Taskindex) - confiqurator_wrapper _
- configuratordile filename

path

- versionlabel
- fileexist - path
= filestatus{functionindex} == indexname

= filename
L YEFSION

b st
. 05

Figure7

Fields of pipeline:

o LastTasklndex(Index): Vector containing the index to the last succeeded task in
an increasing order.

o StatusTask(Tasklndex): Vector containing a status-flag of each task: 0= Ready,
1=Active/runing and 2=Done (if succeed)

» DefaultPipeling(Tasklndex):Vector containing index to the method which is by
default chosen when PVElab is started.

* UserPipeling(TaskIndex): Vector containing index to the methods used in the
pipeline of a PVE correction process. A user could have changed the default
method indices.

0 The PVEout project within the European 5™ framework, NRU
T. Dyrby, 06-07-03 p. 10

The pipeline program for PVElab

task Setup{TaskIndex,M ethodIndex}: Cell-array containing a sub-entry to a
setup structure of a given method in a given task.

task: Task that method belongs to. The task name will appear in the pipeline
program.
method: Name of the method (e.g short-term) to appear in the pipeline
program.
method_name: Full name of method.
function_name: Program/function realising the method.
function_wrapper: Wrapper that interface method and the pipeline program.
description: Information of method, will appear in the pipeline program
(information window).
requireTasklndex: Index of which tasks has to be finished before current
task.
prefix: Added to output files of actual task.
documentation: Text or link how to get further documentation of given
method. Will appear in *about menu’ of the pipeline program.
who_did: Name of group and year. Will appear in ‘about menu’ of the
pipeline program.
configuratorfile: (if exist) text file with settings for actual method

o filename: Nameof file

0 path: pathtofile
configurator_wrapper: (if exist) Wrapper to interface a configurator and the
pipeline program.
versionlabel: Text label identifying version number of given method in a
matlab file.
fileexist: Ready flag if all needed functions in the task field are found by the
pipieline program. 1=exist , 0=do not exist and method can not be executed.
filestatus{functionlndex}: File status of functions for a given method in the
current field of tasks{,}, which should be available to the pipeline program.

o path: Where function is found
indexname: Field name
filename: Name of file for the actual function.
version: Found version label.
exist: If fileexist =1 else=0.
os. Actual operation system

O O O0OO0Oo

0 The PVEout project within the European 5™ framework, NRU
T. Dyrby, 06-07-03 p. 11

The pipeline program for PVElab

2.2.5 The taskDone field and its sub-fields

Information for each finished task in the pipelineis stored in thisfield. Thisregards
from selected method, settings and program files. If an error is detected the field is
cleaned up and deletes all generated files, except input and program files.

Inthe field ‘userdata’ additional user information can be written either into avariable
or asub structure. All other fields are read-only.

_ start
- fime —E .

finish
= task

info
path

= method

= inputfiles{imagelndex, Modalitylndesx} filename

filenarme

= outputfiles{imagelndesx, ModalityIndex} —E path

= taskDone{Tasklndex} =t error{index} i

— Command
= Configuration
= showdImagelndex, ModalityIndex} == filename

— LSErname - path

F indexname
= fi1E5TAN S e fil211 2T

L YErSIOn

— [serdata - b st
L (3

Figure8:

Fields of taskDoneg{ Tasklndex} :

User name: username of logged in the operation system.
time: Evaluation time for given method.
— start: Start time(yy.dd.hh.mm.ss)
— finish: End time (yy.dd.hh.mm.ss)
task: Name of task given in: project.pipeline{,}.task
method: Tag of selected method given in: project.pipeline{,}.method
inputfiles{l magel ndex,M odalitylndex} (filenames are automatic made before
the method is executed)
— filename: header (*.hdr) or image (*.img) filename of input image, given a
modality. Expected image format: Analyze.
— Path: path of input image file of given modality.
— Info: (optional user information) Additional text information of image.
outputfiles{l magel ndex,M odalityl ndex}:(file names are automatic made)

0 The PVEout project within the European 5™ framework, NRU
T. Dyrby, 06-07-03 p. 12

The pipeline program for PVElab

— filename filename: header (*.hdr) or image (*.img) filename of output image,
given amodality. Expected image format: Analyze

— path: path of input image file of given modality.

— Info: (optional user information) Additional text information of image.

error{index}: cell-array of detected errors. Detected errors will clean up the field

and delete generated files. For afinished task the error field is empty.

command: A commands given to the method

configuration: Used configuration parameters. NOT READY/IMPLEMENTED.

show{l magel ndex,Modalitylndex}:(file names are automatic made) Show

snapshot of the output data.

— filename: Images (*.bmp,*jpg or like) that gives a snapshot of the output
result from given method.
Note: The images are shown in the Result window of the pipeline program.
These images are not made by the pipeline program, but by the programmer
for the given method.

filestatus{functionindex}: File status of functions for a given method in the

current field of tasks{,}, which should be available to the pipeline program.

— path: Where function is found

- indexname: Field name

— filename: Name of file for the actual function.

— version: Found version label.

- exist: If fileexist=1else=0.

— 0s: Actual operation system: Linux, Windows and ect.

userdata: A user defined entry for the actual method. Here additional information

can be stored as sub-entries the user needs or like to handle to the following tasks

in the pipeline.

2.2.6 The handles field

Handles to axes that give the possibility for a method to present the user for
progressing data or show images in the user interface of the pipeline program. If the
pipeline program is executed without the user-interface the handles will not be
available but empty.

= h_logwin
e NANAIES ——tsitewin

= h_mainfig

= data

Figure9:

Fields of handles:

h_logwin: Handle to the log window where log information are presented to the
user.

h_sitewin: Handle to the site window, where progress data and images of results
can be presented to the user.

0 The PVEout project within the European 5™ framework, NRU
T. Dyrby, 06-07-03 p. 13

The pipeline program for PVElab

* h_mainfig: handle to the main figure of the user-interface, called mainGUI.

2.2.7 The info field

In this field system information for the loaded pipeline and for the pipeline program
are found.

= workdir
= pri_filaname

wr 5y 5INfo m—ystern_path

= YET3I0N

tmpdindes
L logiile -I: pindex)
filename

Figure 10:

Fields of sysInfo:

» workdir: Directory where al files generated in a pipeline process are saved.

Note: A workdir is automatically created for each new project when the first task
in the pipelineis finished.

» gystemdir: Directory where system files for the pipeline program are placed.

* Prj_filename: filename of project with extension ‘*.prj’, saved in workdir.

* version: version number of the loaded pipeline set-up file.

* logfile: A log file exist for each project, and saved in the workdir with extension
‘“* log’. Log information are transferred to the log bar via project.handles.h_log if
the user-interface is used.

— tmp{index}: Temporary cell-array of log data is saved (added) to the log
filename when a method has finish.
— filename: name of log file with extension **.log’, saved in workdir.

3 Realising a pipeline
Before continuing into deeper levels of the pipeline program where the process, and
set-up of a pipelinein the pipeline program are explained, a summarizeis given.

Preparation must be done to set-up a pipeline in the pipeline program. First define
name and order of the tasksin a pipeline. Then within each task, name and program of
available methods is considered and methods tested. In section XX a preparation
guideline can be found

After preparation the next step isimplementation of:
- A set-upfiletoinitialise a pipeline in the pipeline program.
- Wrappers that interface the pipeline program and a given method.

0 The PVEout project within the European 5™ framework, NRU
T. Dyrby, 06-07-03 p. 14

The pipeline program for PVElab

- Wrappers that interface the pipeline program and a configurator for agiven
method.

3.1 Matlab and the pipeline program
Varargin, varargout

3.2 Connection diagram of the pipeline program

In the following the connectivity between user-interface, wrappers and filesin the
pipeline program are explained and all are referenced to Figure 11.

Robustness, transparency and generality are key words of the pipeline program.

- Robustness: The pipeline program is not affected by a crashing method.

- Transparency: All necessary information regards set-up, used settings and log
information are automatic collected and are fully available within the pipeline
program.

- Generality: The pipeline program is easy to use, independent of operation
systems, and different type of executable realising a method can be used.

A wrapper is afunction, which interface to/from the pipeline program. Basically two
type of wrappers exist in the pipeline program: the main_wrapper and the
function_wrapper / configurator_wrapper.

The user-interface is handled by a function called mainGUI, section 2.1. Here handles
to the site and the log window are given, in this way progressing data, results and log
information can be presented for the user.

0 The PVEout project within the European 5™ framework, NRU
T. Dyrby, 06-07-03 p. 15

The pipeline program for PVElab

mainiz Ul

create -
]]) — 3 Macrofile
site window Log windowy load
e f———______md_____
rd

Log file

Setup file — real —
""‘-l-_._____

read

project file

main_wrapper

checkin

l

function_wrapper

confiqurator_wrapper.

-Run function_name write/create

- Run GUI-Configurator

update/create

N}
checkQut

configuratar file ’
refurn

/

Figure 11:

3.3 A function_wrapper

The function wrapper is responsible to make the pipeline program general in away so
that different methods can be implemented without confliction. It is typically caled
by the main_wrapper, but also called by another function-wrapper. (Figure 11) Some
methods are very aikein this case the same function-wrapper can be used.

The only restrictions making a function wrapper are those for reading/writing the
project (see section 2.2.1), and that a number of input- output arguments are fixed:

project =MethodName_Wrapper (pr oject, Taskl ndex,Methodl ndex,varargin)
Where project is the data structure and the indices are refereed to the field of the
project with the set-up for the actua method given in
project.pipeline.taskSetup{ Taskl ndex,MethodIindex} (section 2.2.4). Varargin holds an
arbitrary number of user input arguments. These are only understood by the given
function.
The syntax for programming a function wrapper:

1) Retrieve information from the project such as input/output names which are
automatic made, given project.taskDone{ Taskindex}

2) Prepare configuration of the method either using

0 The PVEout project within the European 5™ framework, NRU
T. Dyrby, 06-07-03 p. 16

The pipeline program for PVElab

proj ect.pipeline.taskSetup{ Tasklndex,MethodIndex} .configuratorfile or an
other field in the data structure.

3) Execute the method found in:
project.pipeline.taskSetup{ Taskl ndex,Methodl ndex} .function_name
OR
Insert code instead of a function. This require in the taskSetup{,} field in the
project that function_name=function_wrapper for the given method.

4) User data can be added to the project: project.taskDone{ Tasklndex}.userdata,
or the available standard fields in the project as given in section 2.2.5.

An example on how programming a function wrapper is shown in section 4.1.

3.4 A configurator_wrapper

Some methods can be configured with different settings. A configurator user-interface
can be set-up, so the user has the possibility to change the settings, an example is
shown section 2.1. This user-interface is not a part of the pipeline program, but can be
started by the configurator_wrapper. New settings will be used next time the method
is executed if they ae stored in the data structure of the project
project.pipeline.taskSetup{ Taskl ndex,MethodIndex} .configuratorfile. Note: It should
always be possible to restore default settings through the configurator user-interface.

The syntax for making a configurator wrapper:
1) jk
2) fg
3) ghj
4) fg

An example on how to make a configurator wrapper is shown in section 4.2.

3.5 The main_wrapper

The robustness of the pipeline program is insured by the main_wrapper. The main
wrapper is executing programs by refereed to in the taskSetup by the indices
Tasklndex and Methodindex. field found in

project.pipeline.taskSetup{ Taskindex,MethodIndex}, see section 2.2.4 for possible
functions and programs.

In apipelineit isimportant to control process, so two methods can not be executed at
the time, the program is available, the input arguments exist etc. etc.

The process
To control the processin apipeline

3.5.1 checkin

3.5.2 checkOut

0 The PVEout project within the European 5™ framework, NRU
T. Dyrby, 06-07-03 p. 17

The pipeline program for PVElab

3.6 The mainGUI

3.7 Preparation: A task guideline
Tasks defining tasks and order of apipeline...

Task named ‘ Others': typical functions linked to amenu...
Task ‘end’: Alwayslast task: Information of actual pipeline...

0 The PVEout project within the European 5™ framework, NRU
T. Dyrby, 06-07-03 p. 18

The pipeline program for PVElab

3.8 Preparation: A method guideline

In the following a guideline is given when preparation which to full file the set-up file
isgiven
NOTE: By default it is expected:
» That a method reads and save input/output MR- PET-images in the Anayze
format.
» That the orientation between MR and PET is the same.
» That the function realising a method can be executed on Linux-, Unix- and
window platforms.
Method: Tag name of method name to appear in the pipeline program.
Method_name: Full name of method.
Task: Name of the task the given method belongsto/ isrealising.

Version label: A text string to identify the version number of the method in a Matlab
file.

Description: Information given viathe information window to the user about selected
method and its special features.

Documentation: Article or where (e.g. www) the method is published.

Who did: Who did the method (group), city and year.

Requiretask index: Tasks to be done before method may run.

Function name: Name of the function that is realising the method. The function is
executed within the Matlab environment. The same name for the function and method
can be used.

Function syntax: Syntax for the function.

I nput arguments: Description of the input parameters.

Output arguments: Description of the output parameters.

Codetype: Matlab, executable or like to be executed from Matlab.

Configuration: (NOT READY ...under construction) If exist, the configurator will be

used to set-up/initialise the method before execution. Further the configurator gives
the user the possibility to change the set-up through a user-interface.

0 The PVEout project within the European 5™ framework, NRU
T. Dyrby, 06-07-03 p. 19

The pipeline program for PVElab

4 Howto...

4.1 How to write a function wrapper

In following are given an example of a function_wrapper called registrate wrapper.
The function_wrapper is used in the co-registration task, and the same function is
used for both the 110 and the ISP methods realising a co-registration task.

Note that in this example the filename and path of an AIR-file, containing the rigid
transformation matrix after co-registration, is saved in the sub-entry userdata of the
project. All other information to set up the 110 or the ISP is given in the structure of
the project.

0 The PVEout project within the European 5™ framework, NRU
T. Dyrby, 06-07-03 p. 20

The pipeline program for PVElab

function project=registrate_wrapper(project, Tasklndex,Methodl ndex,varargin)

%
%
%

%
%
%
%
%
%

function_wrapper for the two registration methods: 110_method and IPS_method

Input:
project: Structure for actual PVE correction process
Tasklndex: Index in the project-structure for actual task
Methodindex: Index in the project-structure for actual method
varargin: Extrainput arguments, not used

Outout:
project: structure for actual PVE correction process

T. Dyrby, 170303, NRU

%SW version: 170303TD

%

Check if registration function is returning data...

if(~isstruct(project))

% No project structureis given!!
return

end%

%

Add to project: AIR file where to store registration matrix

name=proj ect.taskDone{ Tasklndex} .inputfiles{ 1,1} .name;
[tmp,AlRfile,extAlR,tmp] =fil eparts(name);

project.taskDone{ TaskIndex} .userdata AlRfile.name=[AIRfile,".air;
project.taskDone{ TaskIndex} .userdata. Al Rfile.path=project.info.workdir;%Save in workdir

%

Init matrix to Coreg function. Defined in header of ‘Coreg.m’

name=proj ect.taskDone{ Tasklndex} .inputfiles{ 1,1} .name;
path=project.taskDone{ Tasklndex} .inputfiles{ 1,1} .path;
files.STD=fullfile(",path,name);

name=proj ect.taskDone{ Tasklndex} .inputfiles{ 1,2} .name;
path=project.taskDone{ Taskindex} .inputfiles{ 1,2} .path;
files. RES{ 1} =fullfile(",path,name);

name=project.taskDone{ Taskindex} .userdata. Al Rfile.name;
path=project.taskDone{ Tasklndex} .userdata. Al Rfile.path;
files AIR=fullfile(",path,name);

%

Possible to load a default registration matrix

files. A{ 1} =eye(4,4);% Initial registration matrix

%

Get handle to registration method only used for UIWAIT

h_registration=feval (project. pipeline.taskSetup{ TaskIndex,MethodIndex} .function_name);
set(h_registration,'Visibl€,'off');

%

Call registration method

parent=project.handles.h_mainfig;% Parent handle
ReturnFcn=proj ect.pipeline.task Setupf{ Taskindex,M ethodIndex} .function_wrapper;% Where to return afterwards
visualizer=project.pipeline.taskSetup{ 7,3} .function_name;% Which method to browse:Could be in a configurator...

feval (project.pipeline.task Setup{ Tasklndex,M ethodI ndex} .function_name,'Batch’,h_registration,files,parent,ReturnF
cn,visualizer);
%Coreg('Batch',h,files,parent,Returnicn,,visualizer);

%

OR

%Registrate('Batch’,h,files,parent,Returnfcn,visualizer);

%

Wait until function (figure object) return (is finished)

uiwait(h_registration)

0 The PVEout project within the European 5™ framework, NRU
T. Dyrby, 06-07-03 p. 21

The pipeline program for PVElab

Figure 12 example of a implemented function_wrapper, called
registrate wrapper, which belong to the co-registration task. The same
function_wrapper is used for the two methods realising the co-registration:
Coreg(...) and the Registrate(...).

4.2 How to write a configurator wrapper

4.3 How to make a set-up file

0 The PVEout project within the European 5™ framework, NRU
T. Dyrby, 06-07-03 p. 22

The pipeline program for PVElab

function tasks=set upPVELab;

% Setting up the user defined information about

% the different methods and which task it bel ongs.

%

% The information is stored in the project structure:
% project.pipeline.tasks{Taskl ndex, Met hodl ndex}

%

%
9%SW version: 170303TD, T. Dyrby, 120303, NRU

% Add i nage infornation
pi pel i ne.i mageMobdal ity={"' Structural',' Receptor'};
pi pel i ne. i magel ndex=1,

%

% TASK: FI LELOAD
Taskl ndex=1; % Fi | eLoad

Met hodl ndex=1; % Fi | eLoad

t npTask. task=' Fi | eLoad' ;

tnpTask. net hod='fil el oad' ;

t npTask. net hod_name=' Fi | eLoad' ;

tnpTask. functi on_nane=' Fi | eLoad_wr apper"';

tnpTask. description='Load inagefiles in different fornats and convert to the Anal yze
file format';

t npTask. requi r e_t aski ndex=0; ¥9=no tasks has to be done
tnpTask. functi on_w apper =' Fi | eLoad_wr apper"';

tnpTask. prefix="";

t npTask. docunent ati on=' No avail abl e';

t npTask. who_di d=' NRU, 2003';

t npTask. confi gurat or _wrapper="";

tnpTask. configuratorfile. nane="";

tnpTask. configuratorfile.path="";

t npTask. ver si onl abel =" SWversion';

t askSet up{ Taskl ndex, Met hodl ndex} =t npTask;

%

% TASK: Regi stration
Taskl ndex=2; % Regi strati on

Met hodl ndex=1; % 11 O

tnpTask. t ask=' Regi stration';

t npTask. nethod="110 ;

tnpTask. net hod_nane='I nteractive | nage Overlay';
tnpTask. functi on_nane=' Coreg' ;

t npTask. descri pti on=' Manual Iy coregi stration by using i mage overlay';
tnpTask. requi re_t aski ndex=1;

tnpTask. functi on_wr apper =' regi strat e_w apper"';
tnpTask. prefix="r_";

t npTask. docunent at i on=' None avai l abl e';

t npTask. who_di d=' NRU, 2003';

t npTask. confi gurator _wrapper="";

tnpTask. configuratorfile. nane="";

tnpTask. configuratorfile.path="";

t npTask. ver si onl abel =" SWversion';

t askSet up{ Taskl ndex, Met hodl ndex} =t npTask;

%

Taskl ndex=2; % Regi strati on
Met hodl ndex=2; % | PS

t npTask. t ask=' Regi stration';

t npTask. net hod=' | PS';

t npTask. net hod_name=' | nteracti ve Point Selection';
tnpTask. functi on_nane=' Regi strate';

tnpTask. descri ption='User selected points (mn. 3) in both scans are registrated';
t npTask. requi re_t aski ndex=1;

tnpTask. functi on_wr apper ='regi strat e_w apper"';
tnpTask. prefix="r_";

t npTask. docunent ati on=' None avail abl e';

t npTask. who_di d=' NRU, 2003';

t npTask. confi gur at or _wr apper="";

tnpTask. configuratorfile. nane="";

tnpTask. configuratorfile.path="";

t npTask. ver si onl abel =" SWversion';

t askSet up{ Taskl ndex, Met hodl ndex} =t npTask;

0 The PVEout project within the European 5™ framework, NRU
T. Dyrby, 06-07-03 p. 23

The pipeline program for PVElab

Figure 13. Example of setting up a method for a given task. Here is shown: the
first task:’Fileload’ with one metod:’fileload’. And the second task:’ Registration’
with two methods.’110’ and ‘IPS'.

4.4 How to make a method guideline

Method: 110

Method name: Interactive Image Overlay
Task: Co-registration

Version labdl: version

Description: Interactive Image Overlay (110) a manual method for co-registration (6-
DOF) high resolutions MR scan and alow resolution PET/SPECT brain scan.

Documentation:

Who did: NRU, Copenhagen, 2000-2003

Requiretask index: 1 (Files|oad)

Function name: coreg

Function syntax: coreg('batch’,[],Filename,ParentHandl e,ReturnFucn)

I nput parameters:
Filename: structure containing a high resolution MR scan and one or more low
resolutions PET/SPECT given in acell array. All in the Analyze image format.
Example of Filename structure:

Fi | enane. RES: Nane and path for high resolution MR scan

Fi l enane. STD{}: Nane and path of one or nore |ow resol ution PET/ SEPCT
scans

Fil enane. A: |f exist, a given co-registration natrix is used as
initiated co-registration

Filenane. AIR |f filenane exist, co-registration natrix is saved in
air-format.

ParentHandle: Figure handle to parent/main figure so it can be found when
returning fra Coreg.

Example:

ParentHandle=h_mainfig

ReturnFucn: Function to call exiting the Coreg program.
Example when exiting from Coreg in Matl ab:
feval (ReturnFucn,'ReturningData’,ParentHandle, Aall);
where
- ReturnFucn="checkOut’
- ‘ReturningData’: Parameter telling that co-registration
matrix is returned by Coreg.
- ParentHandle=h_mainfig.

0 The PVEout project within the European 5™ framework, NRU
T. Dyrby, 06-07-03 p. 24

The pipeline program for PVElab

- Aall cell array contain co-registration matrix.

Output parameters. None, is using the * ReturnFucn’

Codetype: Matlab code, (figure object)

Configuration: none

45 File formats and directories

The file name of the first loaded modality given in project.pipeline.modality{1}...

In general: Use prefix given in the set-up added to the fileb

Name of project.pipeline.inputfile.name{1,1} or/and with an extension.

Files are only made if workdir exist, which is generated when the first task is done or
an existing project fileisloaded.

Workdir: unique project directory
o Path: sub directory to project.pipeline.inputfile.path{1,1} with prefix
‘WORK'. If directory exist an index is added to the prefix,
‘WORK _index'.
Log file: Text filew. log information
o0 Filename: project.pipeline.inputfile.filename{1,1} with extension
“* log’
o Path: workdir
Project file: Matlab datafile.
o Filename: project.pipeine.inpuitfile.filename{1,1} with extension
“*prj.
o Path: workdir
Set-up file: A Matlab m-file w. afunction setting up a pipeline
0 Filename: project.pipeline.inputfile.filename{1,1} with extension
“*prj.
0 Path: Within the Matlab path
Macro file: Mathlab datafile, w. user defined set-up of a pipeline
o Filename: project.pipdine.inputfile.filename{1,1} with extension
“*.mco’.
0 Path: user defined
Output files: Generated image files in Analyze format
o Filename: project.pipelineinputfile.filename{1,1} add prefix givenin
the set-up file.
o Path: workdir
Configurator file: Text file containing in parameters for a method
0 Filename: user defined
o Path: Within the Matlab path.
Function_wrappers, configurator_wrapper: Interfacing the pipeline
program.
o Filename: Given in the set-up file.
0 Path: Within the Matlab path
Method program files: Realising atask

0 The PVEout project within the European 5™ framework, NRU
T. Dyrby, 06-07-03 p. 25

The pipeline program for PVElab

o0 Filename: Given in the set-up file.
0 Path: Within the Matlab path

0 The PVEout project within the European 5™ framework, NRU
T. Dyrby, 06-07-03 p. 26

