
PVE Lab

 The PVEout project within the European 5th framework, NRU
 T. Dyrby, 16-12-02 p. 1

PVE Lab

 The PVEout project within the European 5th framework, NRU
 T. Dyrby, 16-12-02 p. 2

1 INTRODUCTION... 3

2 TIMETABLE .. 9

3 THE PVE LAB.. 4

3.1 MAINGUI ... 4
3.1.1 Proposed menus.. 5
3.1.2 Proposed task ... 5
3.1.3 Proposed Progress window.. 6
3.1.4 Proposed information bar... 6

3.2 BEHIND PVE LAB ... 6
3.2.1 Main- and localGUI ... 6
3.2.2 CheckIn, Checkout and the registry file.. 7
3.2.3 Macro file ... 7
3.2.4 Log file.. 7
3.2.5 Common functions for the PVE Lab ... 7

4 INITIATED SYNTAX FOR THE PVE LAB ... 9

4.1 MAINGUI ... 10
4.2 WRAPPER.. 11
4.3 FUNCTIONS CALLED BY A WRAPPER.. 13

4.3.1 varargout=checkIn(METHOD,varargin) ... 13
4.3.2 varargout=checkout(METHOD,varargin) ... 15
4.3.3 hh_localGUI=name_localGUI(varargin) .. 16
4.3.4 varargout=name_method(varargin)... 17

4.4 REGISTRY FILE AS A TEXT FILE.. 18
4.5 THE LOG FILE AS A TEXT FILE ... 21

5 PROGRAMMING GUIDELINES.. 21

6 VOCABULARY .. 21

PVE Lab

 The PVEout project within the European 5th framework, NRU
 T. Dyrby, 16-12-02 p. 3

1 Introduction
One success criteria for the PVEout (Partial Volume Effect) project within the European 5th

framework is to make a common interface for a product that can do a full partial volume
correction of a PET/SPECT scan using a high resolution MR scan.
At the Firenze meeting, Italy, mid November 2002, the partners agreed to make a proposal on
how the different methods in the PVE process could be integrated through a user-friendly graphic
user interface (GUI). Further, the partners agreed in using the Matlab program from MathWorks
Inc. for implementing the GUI.
A major advantage using Matlab as platform is the non-dependency of the operating system
(Linux or Windows), the worldwide use of Matlab within medical community, and an easy way to
realize the GUI.

The Copenhagen group, NRU, would make the preliminary description. The result is given in the
following document where a full (preliminary) description on how an user friendly interface could
be realized, code be written and, different methods integrated. Further a proposed prototype of a
GUI is created in Matlab.

This document contain the following sections:

In section 2 an introduction is given on how the proposed GUI of the PVE Lab can look like.
Further there is a description on how a method is thought to be implemented in the PVE Lab. A
method is a program from one of the partners doing e.g. segmentation, registration or like.

Section 3 is a timetable which gives a guess of what to do and time to spend at the different
blocks in the PVE Lab. Here the meeting in Caen, January 2003, is important.

Then in section 4 is given an initiated syntax description of the different common functions in the
PVE Lab.

Welcome to the idea of:

PVE Lab

 The PVEout project within the European 5th framework, NRU
 T. Dyrby, 16-12-02 p. 4

2 The PVE Lab
The PVE Lab consist of a main GUI that offer all the methods to do a PVE correction of a low
resolution PET or SPECT scan (functional image) given a high resolution MR scan (structural
image).

2.1 MainGUI
In Figure 1 is shown a proposed prototype of the user-friendly GUI made in Matlab. The GUI is
referred as the mainGUI. In section 2.1.1, 2.1.2, 2.1.3 and 2.1.4 a more detailed explanation is
found.

Figure 1 Proposed prototype for a main GUI for the PVE Lab where the user-fr iendly inter face is a basic
requirement. The main GUI consists of: Progress window, where the different methods can visualize results.
Tasks are shown with numbers (1,2,3 and 4) as Registration, Segmentation, Atlas and PVEcorrection.
Different Methods can be selected in each task as the case for the registration task. Play button activate actual
task and glasses button show the result in the progress window. Information bar is where information can be
given to the user . The Menu consists of File, Star t, Tool, View and Help.

PVE Lab

 The PVEout project within the European 5th framework, NRU
 T. Dyrby, 16-12-02 p. 5

2.1.1 Proposed menus

´´´

2.1.2 Proposed task

Start menu: Run a sequence of all tasks (registration, segmentation etc.)
with chosen methods or load and run a recorded macro.

Tool menu: Chose a PET simulation instead of a real PET scan. Other
additional tools can be added.

View menu: Different methods can be used for viewing the result of MR,
PET or SPECT scan after a task or PVE correction.

View result: Opportunity to view result from given task. The result can be
viewed in the progress window.

Run Task: Opportunity to run only a given task with chosen method.

File menu: Load and save
possibilities, more can be added.
Name of loaded MR and SPECT/PET
scan are shown at the top of the
widow.

Task and Methods: A task is e.g. registration, segmentation
Atlas and PVEcorrection. A PVE correction consists therefore
of a sequence of tasks. In each task a method can be chosen
between one or more available methods. In the registration
task there e.g. exist four different methods: IIO, ISP, SPM99
or AIR. In this case the IIO method is chosen.

PVE Lab

 The PVEout project within the European 5th framework, NRU
 T. Dyrby, 16-12-02 p. 6

2.1.3 Proposed Progress window

2.1.4 Proposed information bar

2.2 Behind PVE Lab
The success and stability of a program, as the PVE Lab, is both defined by the mainGUI as the
proposed prototype in Figure 1 and the structure of the code behind the mainGUI, shown in
Figure 2. The basic idea of the code structure behind the PVE Lab is to split apart the GUI code
and working code. The GUI has to interface to the user and give a good overview of the PVE Lab,
its possibilities and the state in a PVE correction process. The working code is for specialists and
includes code from methods doing the segmentation, reslicing etc. Further, code that handle the
set-up of the methods and controlling the sequence of a PVE correction process will be working
code.

2.2.1 Main- and localGUI

In the PVE Lab there exist two types of GUI: The mainGUI and the localGUI.
The mainGUI represent the PVE Lab (Figure 1) and reacts on an action, such as a pressed button
or selection of a menu. When an action is registered a matched callback function is called. This is
seen as the Actionname_callback in the flow diagram, Figure 2. If exist the Actionname_callback
call a wrapper that match the chosen method, see Figure 2. The idea of a wrapper is to shield a
method from other methods and GUIs. This should make it easier to overview the code because
the functions is expected to have a limited size and force the programmer to write structural and
general code. In this way it should also be easier to track down failures/problems and adding new
methods. Inside each wrapper code written for each method is called.

The localGUI is designed for a given method and therefore only exist within the wrapper, as
shown in Figure 2. The localGUI has the possibility to send plots or images to the progress
window and text to the infobar in the mainGUI. Further it can act as a configurator with its own
user interface, or as a two-way communication link between the user and a manual method as
when registration two images. It should be noted that whether a localGUI is created is a decision
for the programmer of the method.

Progress window: A method
can show results in the main
GUI ‘on the fly’ or when
finished. Both plots and
images can be shown in the
progress window. A handle
will be given to the started
method.

Information bar: User or log information
can be received in the information bar.
The infobar can also be used as an online
help menu.

PVE Lab

 The PVEout project within the European 5th framework, NRU
 T. Dyrby, 16-12-02 p. 7

2.2.2 CheckIn, Checkout and the registry file

Working code is code without any GUI as the case for methods doing e.g. the segmentation or
the reslicing. The methods are (typically) programmed by the designer of the given algorithm and
is placed within a wrapper, as shown in Figure 2.
The heart of the PVE Lab is the two working code functions checkIn and checkOut, see Figure 2.
The checkIn function is controlling the parameters for a given method before it is called e.g. if
files are available. Further it checks whether a method must be executed at the given state in a
PVE correction process or not. If not the wrapper is forced to return to the mainGUI. The
checkIn function reads a registry file to get information upon the actual state of the PVE
correcting process. The stored information in the registry file could be chosen methods, path,
input output files and etc. Further the registry file keeps information needed for a method to be
initialised. The registry file could be a text file, then it always can be read and edited with a
normal text-viewer.

The checkOut function is called when a method has finished its work, see Figure 2. The function
updates the registry file so the next state in the PVE correcting sequence can be executed. Further
it should cleanup used memory to avoid memory leak, and if the localGUI is used it control that it
is shutdown correctly.

2.2.3 Macro file

A macro file gives the possibility to repeat a recorded PVE correction sequence. The macro file is
recorded by saving the functions and arguments of activated callback functions in a PVE
correcting sequence. It should be possible for the user to load and execute a recorded macro file
from one of the menus in the mainGUI see section 2.1.1.
The macro file should be a text file, then it always can be read and executed by Matlab.

2.2.4 Log file

The log file saves all necessary information of functions call that can be used to track down
failures or see activated functions. The log is meant to be placed within the wrappers.
It would be preferred that the macro file is a text file, then it always can be read and edited with a
normal text-viewer.

2.2.5 Common functions for the PVE Lab

To generalise the code both the checkIn and checkOut functions are common for all wrappers.
This include functions reading and writing to the Log, Registry and macro file.

PVE Lab

 The PVEout project within the European 5th framework, NRU
 T. Dyrby, 16-12-02 p. 8

Figure 2 Basic flow diagram of the PVE Lab. When activation (e.g. button pushed) is detected in the mainGUI
a given callback function and then a given wrapper is called. The wrapper shields the following function from
the mainGUI except a handle to the progress window where to draw graph or images, and a handle to the
Infobar where to wr ite information. Extern files are Log file where log information are stored, a registry file
that holds information on the status of the actual PVE correcting process and a macro file so a PVE correction
sequence can be repeated.

PVE Lab

 The PVEout project within the European 5th framework, NRU
 T. Dyrby, 16-12-02 p. 9

3 Timetable
This timetable is only a rough guess of time to spend at the different blocks in the PVE Lab. It is
thought that at the proposed meeting in Caen january 2003 the partners will agree in a finalised
timetable of the PVE Lab and the blocks containing it.

Caen January, 19.-20.th 2003:
Feedback: New ideas, define and split the project into blocks. Discuss milestones on each
block.

Preliminary, what to do and app. time to spend:

MainGUI: (1.5 month)
Make a design of the PVE Lab (a proposed is given), define names of variables and realise
it.

CheckIn and checkOut: (app. 2.5 months or more)
Two general functions -> Very important to be well defined. Which input/output
arguments should be used. How should the registry file be designed so it can full fill the
demand from the two functions. The design is very depended upon the input/output
specification of the different methods by the individual partner.

LocalGUI: (0-1.5 months)
GUI for the individual methods. How did the partner intent the GUI to look like and what
should be possible in the localGUI: Configuration, only information or a two-way’ed
communication between the localGUI and the method?

Individual methods from the partners: (0.5 month)
Detailed description of input and output arguments.

PVE Lab

 The PVEout project within the European 5th framework, NRU
 T. Dyrby, 16-12-02 p. 10

4 Initiated syntax for the PVE Lab

4.1 MainGUI
Description:

The mainGUI does a callback when activation is registered in the PVE Lab. Activation is
defined as pushing a button, selecting a menu or like. Each activation is connected to a
callback function which does nothing but pass arguments to a specific wrapper.

Syntax: (standard in Matlab ver 6.1 and later)

name_callback(h, eventdata, handles, varargin)

NOTE: The ‘name’ is user defined, but ‘_callback’ is Matlab defined.

Arguments:

• h: Callback for object's handle (structure).

• eventdata: Reserved for future use by Matlab.

• handles: Structure containing handles of all components in the mainGUI.
• varargin = [arg1,arg2,..,argN]:

arg1,arg2,..,argN: Future or user defined input arguments

Calling:
A specific wrapper

External call:

Pseudo-code:
Cal l a wr apper
Ret ur n t o mai nGUI

PVE Lab

 The PVEout project within the European 5th framework, NRU
 T. Dyrby, 16-12-02 p. 11

4.2 Wrapper
Description:

A wrapper is a function that interfaces between the mainGUI (through a callback) and a
given method. The wrapper takes care of the initialisation of the method, starting up the
localGUI if needed and afterward cleaning up before returning to the mainGUI.

Syntax:
varargout=name_wrapper(varargin)

name_wrapper: ‘name’ is user defined but should be closely related to the name of the
following task. ‘_wrapper’ is predefined.

Arguments:
• varargin = [hh_handles,command,arg1,arg2,..,argN]:

hh_handles: Structure containing handles of all components in the mainGUI.

command: (more argumets can be added…)
check_Status: Via the registry file is checked if the situation is correct
run_Method: Run given method
run_MethodShowResult: Run given method and show result
kill_LocalGUI: Kill localGUI after a good property
no_LocalGUI: Run method without localGUI use default parameters
all_LocalGUI: Let the progress window use all the mainGUI

arg1,arg2,..,argN: Future input arguments

• varargout =[status,arg1,..,argN]:
status: (more states can be added…)

Run: Method is checked-in
err_Registry: Can’ t find registry file
err_infile: Can’ t find input file
err_outfile: Can’ t find output file
err_method: Can’ t find program
err_state: Wrong state e.g. segmentation before registration

localGUI_active: GUI is active

arg1,arg2,..,argN: Future input arguments

Calling:
• var ar gout =checkI n(hh_handl es, var ar gi n)
• hh_l ocal GUI =name_l ocal GUI (var ar gi n)
• var ar gout =name_met hod(hh_l ocal GUI , var ar gi n)
• var ar gout =checkOut (METHOD, var ar gi n)
• An ot her wr apper (METHOD, var ar gi n)

Extern call:

Pseudo-code :
Check-in given method and return if check-in is not possible.
If needed, start up localGUI for given method
Call and initialise method and run it

PVE Lab

 The PVEout project within the European 5th framework, NRU
 T. Dyrby, 16-12-02 p. 12

If exist close localGUI
Check-out the method by updating the registry file
Cleanup before return to mainGUI
If wanted call an other wrapper

PVE Lab

 The PVEout project within the European 5th framework, NRU
 T. Dyrby, 16-12-02 p. 13

4.3 Functions called by a wrapper
Below is a short description of the functions used by the wrapper, what they are thought as in- and
out put arguments and function.

• var ar gout =checkI n(METHOD, var ar gi n)
• hh_l ocal GUI =name_l ocal GUI (var ar gi n)
• var ar gout =name_met hod(hh_l ocal GUI , var ar gi n)
• var ar gout =checkOut (METHOD, var ar gi n)

• An ot her wr apper (METHOD, var ar gi n)

4.3.1 varargout=checkIn(METHOD,varargin)

Description:
A wrapper is checked-in if actual state in the PVE correcting process is valid and needed
files exist. This is known through a predefined order of states. The state of a process is
stored in the registry file. If an error is detected a wrapper will not be able to checked-in
and may return to the mainGUI and an error message is send to the user.

Syntax:
varargout=checkIn(METHOD,varargin)

Arguments:
• METHOD: Label (constant) of the method checking in

• varargin=[hh_handles,command,arg1,..,argN]
hh_handles: Structure containing handles of all components in the mainGUI.

command: (more argumets can be added…)
check_Status: Via registry file the situation is checked for given
method.
run_Method: Run given method
run_MethodShowResult: Run given method and show result
kill_LocalGUI: Kill localGUI
no_LocalGUI: Run method without localGUI use default parameters

arg1,arg2,..,argN: Future input arguments

• Varargout=[status,MRin,MRout,PETin,PETout,h_mainfig,
 h_infobar,arg1,..,argN]

status: (more states can be added…)
Run: Method is checked-in
err_Registry: Can’ t find registry file
err_infile: Can’ t find input file
err_outfile: Can’ t find output file
err_method: Can’ t find program
err_state: Wrong state e.g. segmentation before registration

MRin: Fi l ename wi t h pat h t o i nput MR
MRout: Fi l ename wi t h pat h t o out put MR
PETin: Fi l ename wi t h pat h t o i nput PET/ SPECT

PVE Lab

 The PVEout project within the European 5th framework, NRU
 T. Dyrby, 16-12-02 p. 14

PETout: Fi l ename wi t h pat h t o out put PET/ SPECT
h_progressWin: Handle to the progress window in the mainGUI
h_infobar: Handle to information bar in the mainGUI
arg1,arg2,..,argN: Future input arguments

Calling:

External call:
Registry file: Text (or other) file with information of path and status of a PVE
correcting process.
Log file: Text (or other) file with log information of the PVE correcting process.

Pseudo-code:
Check-in given method
Return with status if check-in succeeds.
If not succeed return an error

PVE Lab

 The PVEout project within the European 5th framework, NRU
 T. Dyrby, 16-12-02 p. 15

4.3.2 varargout=checkout(METHOD,varargin)

Description:
Before a wrapper can return to the mainGUI or calling an other wrapper it must be
checked-out. The function updates the registry file with information about the executed
method and the state in the PVE correcting process. If an error is detected the registry file
is not updated before returning to the mainGUI further an error message is send to the
user.

Syntax:
varargout=checkOut(METHOD,varargin)

Arguments:
• METHOD: Label (constant) of the method checking in
• Varargin=[command,MRin,MRout,PETin,PETout,h_progressWindow

,h_infobar,arg1,..,argN]
status: (more states can be added…)

Run: Method is checked-in
err_Registry: Can’ t find registry file
err_infile: Can’ t find input file
err_outfile: Can’ t find output file
err_method: Can’ t find program
err_state: Wrong state e.g. segmentation before registration

MRin: Filename with path to input MR
MRout: Filename with path to output MR
PETin: Filename with path to input PET/SPECT
PETout: Filename with path to output PET/SPECT
h_progressWindow: Handle to the progress window in the mainGUI
h_infobar: Handle to information bar at the mainGUI
arg1,arg2,..,argN: Future input arguments

• VarargOut=[arg1,..,argN]
arg1,arg2,..,argN: Future input arguments

Calling:
External call:

Registry file: Text (or like) file with information of path and status of a PVE correcting
process.
Log file: Text (or like) file with log information of the PVE correcting process.

Pseudo-code :
Check-out given method.
If no error update the registry file
If localGUI is used, restore mainGUI and kill/shout down the localGUI

PVE Lab

 The PVEout project within the European 5th framework, NRU
 T. Dyrby, 16-12-02 p. 16

4.3.3 hh_localGUI=name_localGUI(varargin)

Description:
Interaction with a user can be done by a localGUI. The localGUI can be used to inform
about a process of a given task (e.g. segmentation), or it can be used as a 2-way
communication in the case of a semi-automatic or a manual method (e.g. registration).
A given localGUI is typical designed/programmed by the designer of the given method.

Syntax:
hh_localGUI=name_localGUI(varargin)

Arguments:
• varargin=[command,h_mainfig,h_infobar, arg1,..,argN]

command: (more states can be added…)
check_Status: Via the registry file the situation is checked for given
method.
run_Method: Run given method
run_MethodShowResult: Run given method and show result
kill_LocalGUI: Kill localGUI
no_LocalGUI: Run method without localGUI use default parameters

h_mainfig: Handle to mainfig in the mainGUI
h_infobar: Handle to information bar at the mainGUI
arg1,arg2,..,argN: User defined input arguments

• hh_localGUI: A handle to a structure of handles of available buttons, edit boxes,
List box etc in the localGUI.

Calling:
External call:
Pseudo-code :

Set up a GUI interface, which fits a given metod.
Return handles of the localGUI

PVE Lab

 The PVEout project within the European 5th framework, NRU
 T. Dyrby, 16-12-02 p. 17

4.3.4 varargout=name_method(varargin)

Description:
A method is a program performing e.g. segmentation; registration or loading and
converting between different file formats. The given method can be any executable,
Matlab routine or MEX function with given input and output arguments.

Requirements:
1) MR -, PET- and SPECT shall be read and written in the analyze format.
2) Run on both the Linux and the Windows platform.

Syntax:
varargout=name_method(varargin)

Arguments:
• varargin=[hh_localGUI,h_Infobar,arg1,arg2,..,argN]

hh_localGUI: Handles in localGUI
h_infobar: Handle to information bar at the mainGUI
arg1,arg2,..,argN: User defined input arguments (in-/out filenames)

• varargout=[arg1,arg2,..,argN]
arg1,arg2,..,argN: User defined input arguments (in-/out filenames)

Calling:
User defined!!

Pseudo-code:
Defined by the designer of the actual method how to solve a given method.

PVE Lab

 The PVEout project within the European 5th framework, NRU
 T. Dyrby, 16-12-02 p. 18

4.4 Registry file as a text file
Description:

The registry file is a text file and contains status on finished methods in the PVE
correction process and is read/written by wrappers, see Figure 2.
The name of the registry file is connected to the structural file (MR scan) with the
extension * .reg.
The name of the registry file is written into the header of the analyze file format for the
given structural file. This gives the possibility to continue a process later on or to track
information upon which methods, structural and functional files are used in a given
process.

Syntax:
<work directory><separator><argument><comment><CR>
<result directory><separator><argument><comment><CR>
<task_order><separator>< task _1><space> … <space>< task _N><CR>

(For each task:)

<method><CR>
<info_ task ><separator><argument><space><argument><space>...<comment><CR>
<info_ task ><separator><argument><space><argument><space>...<comment><CR>
…
<info_ task ><separator><argument><space><argument><space>...<comment><CR>

Arguments:
<separator>

‘ :’ Separates commands and arguments
<work directory> (command, not case sensitive)

‘work_dir’ Directory containing input files can be either in the Linux- (‘ /’) or the
Windows (‘c:\..’) way.

<result directory>(command, not case sensitive)
‘ result_dir’ Directory containing result files generated under the PVE correction.
Can be in either in the Linux- (‘ /’) or the Windows (‘c:\..’) syntax.

<task_order> (command, not case sensitive.)
‘ task_order’ Expected order of/and tasks in registry file.

NOTE: It is possible that not listed tasks exist. Such a task or task are called part
task(s). In the converting task where file are loaded (below example) a two part
task are used: one that load and convert a functional file and one for the structural
file. In the registration task a part task do the reslicing is used.

<tak_1-N> (command, not case sensitive)
’name_task’ name of actual task followed by ‘_task’ .

<info_task > (command, not case sensitive)
‘ input file’ zero or more strings for input file (no path)
‘output file’ zero or more strings for input file (no path)
‘method’ string for actual method (program) used

PVE Lab

 The PVEout project within the European 5th framework, NRU
 T. Dyrby, 16-12-02 p. 19

‘varargin’ zero or more input arguments for actual task
‘varargout‘ zero or more output arguments for actual task
‘start time’ mm.dd.ss start time for task (one argument)
‘end time’ mm.dd.ss end time for task (one argument)
‘date’ dd.mm.yy date of process (one argument)
‘ log file’ string for log file
‘user_defined_1‘ zero or more different user defined user defined strings
…
‘user_defined_n‘ zero or more different user defined user defined strings

<argument> (case sensitive)
String (no spaces)

<space>
one or more spaces

<comment> = <%><string> (Not case sensitive.)
 ‘string’ User defined text

<CR>
New line

PVE Lab

 The PVEout project within the European 5th framework, NRU
 T. Dyrby, 16-12-02 p. 20

Example:
In a registration process of a MR and PET scan the following task and order has to be
executed:

%%%%%%% r egi st r y f i l e st ar t %%%%%%%%%%

%header i nf or mat i on
Wor k_di r : / depot / scans/ %wher e i nput f i l es ar e f ound
r esul t _di r : / depot / scans/ r esul t A/ %wher e t o pl ace out put f i l es

Task_or der : conver t i ng r egi st r at i on r esl i c i ng segment at i on at l as
(s i mul at i on) PVEcor r ect i on

%i nf or mat i on on whi ch t asks ar e done and t hei r ar gument s
conver t i ng_t ask %Thi s i s a mai n t ask t hat ’ s use

%l oadTar get _t aks and l oadSour ce_t ask

l oadTar get _t ask % par t t ask Loadi ng MR f i l es
i nput f i l e: MRname. sf h % Loadede i n s i mpl e f or mat
out put f i l e: c_MRname. hdr % I ndi cat e conver t i ng
met hod: Conver t sf 2Anal yze % Pr ogr am used t o sol ve t he t ask
var ar gi n:
var ar gout :
st ar t t i me: 02. 13. 00 %hh. mm. ss
end t i me: 02. 15. 00 %hh. mm. ss
dat e: 18. 11. 02 %dd. mm. yy
l og f i l e: MRname. l og %Wher e t o l og cal l backs

l oadSour ce_t aks % par t t ask l oadi ng PET/ SPECT f i l es
i nput f i l e: PETname. hdr %
out put f i l e:
met hod: l oadRES %pr ogr am used t o sol ve t he t ask
var ar gi n:
var ar gout :
st ar t t i me: 02. 13. 00 %hh. mm. ss
end t i me: 02. 15. 00 %hh. mm. ss
dat e: 18. 11. 02 %dd. mm. yy
l og f i l e: MRname. l og %Wher e t o l og cal l backs

r egi st r at i on_t ask %Thi s i s a mai n t ask t hat ’ s use
 %r esl i c i ng_t ask

i nput f i l e: c_MRname. hdr c_PETName. hdr
out put f i l e:
met hod: I I O %name of met hod
var ar gi n: c_MRname. hdr c_PETname. hdr %l i st of ar gument s
var ar gout : A %The r i gi d body t r ansf or mat i on
st ar t t i me: 04. 02. 22 %hh. mm. ss
end t i me: 04. 24. 22 %hh. mm. ss
dat e: 18. 11. 02 %dd. mm. yy
l og f i l e: MRname. l og %Wher e t o l og cal l backs
ot her : c_MRname. ai r %I nf o of r egi st r at i on mat r i x / i nf o saved i n AI R-
f or mat

r esl i c i ng_t aks % par t t ask Resl i c i ng
i nput f i l e: c_PETname. hdr
out put f i l e: r c_PETname. hdr
met hod: i nt er pol 3 %name of sel ect ed t ask
var ar gi n: c_PETname. hdr A %l i st of ar gument s
var ar gout : r c_PETname. hdr %l i st of ar gument s
st ar t t i me: 04. 02. 22 %hh. mm. ss
end t i me: 04. 24. 22 %hh. mm. ss
dat e: 18. 11. 02 %dd. mm. yy
l og f i l e: MRname. l og %Wher e t o l og cal l backs

%%%%%%% r egi st r y f i l e end %%%%%%%%%%

PVE Lab

 The PVEout project within the European 5th framework, NRU
 T. Dyrby, 16-12-02 p. 21

4.5 The Log file as a text file
The log file is a text file and contain logged information of activation in the PVE Lab by copying
the callbacks into the log file. The log file can be used both as a guideline for new users, to watch
problems in the process line or as a Macro if the same process has to be repeated.

The name of a log file is the same as the MR file name added with the extension * .log.

Syntax:
<callback no. 1><CR>
<callback no. 2><CR>
…
<callback no. n><CR>

!!!!!!!!!!!!!!!! NOT FINISHED !!!!!!!!!!!!!!!!!!!!!!!

5 Programming guidelines

• In the same function do not mix GUI code and other code!
• Think of the memory been used. Clean up after use!
• Keep things simple this often makes speedy methods!
• Avoid global variables!
• Write the code, as it should be checked/used by others!
• Comments and introduction in a function is a must!
• Writing handles:

h_name: a handle to a structure of variables (pointer)
hh_name: a handle to a structure of handles (pointer to pointer)

6 vocabulary

Task
Segmentation, registration etc.

Method
A program that’s realize a given task, e.g. different methods to do a registration

LocalGUI
GUI for a given method and is should be designed by the designer behind the method

MainGUI
GUI for the PVElab

Wrapper
Function that interface between the mainGUI a given method.

Matlab
Platform of the PVElab, is independed of operation system

Varargin/outs
Input and out variables between functions. The number is specific for the individual
function

PVE Lab

 The PVEout project within the European 5th framework, NRU
 T. Dyrby, 16-12-02 p. 22

Callback
Matlab do a callback when activation is registered e.g. push button.

Progress window
Where a task can display process information (graphs or images) in the mainGUI.

Infobar
Where information of a method can be given to the user

handle
A ‘pointer’ to a given structure containing variables or handles. Here additional
information can be stored and changed after calling and before returning of callbacks.

Overloaded functions:

Functional file
Low resolution PET/SPECT scan in the analyze format

Structural file
High resolution MR scan in the analyze format consist of an header file (* .hdr) and image
file (* .img)

