PVE Lab

A way to realise

The PVE Lab

[0 The PVEout project within the European 5" framework, NRU
T. Dyrby, 16-12-02

p.1

PVE Lab

1

2

3

5

6

NI @ 11 L I 1 SRR 3
LI 72 = RS 9
THE PVE LAB ...ttt sttt sttt et b e s e et e s b e se e bt e be e e b e e be st ebeebeseebesbeseebenbeneesenbeneas 4
I R |V . 1N 1 1 PSPPSR PRSP 4
0 0 A o o001 o I 17 S 5
I 0 o 0 001 o T TS 5
3.1.3 PropoSed ProgreSS WINOOWc.eiueiiereesieeieseeseeseeseessessssssesssessseesseessesssessssssesssesssesssesssssssssssssesnes 6
3.1.4 Proposed information Dar...........c.cv e iiese et ettt et a e sne e ne e re s 6
3.2 BEHIND PV E LAB ..ttt ettt a e ettt e ae e e bt et e e m bt e ateeaeeebeeebeebeensesaeesneesaeanseenne 6
R 2% R |V =TT =T o I o= 1 RS 6
3.22 Checkin, Checkout and the registry fil€.........oo e 7
R 220 T 1Y = 1o o 1 = RS 7
T S oo I {1 = SO S R T TSSO U TSP USRS PO 7
3.25 Common functionSfOr the PVE Labccoiiiiiieeee et 7
INITIATED SYNTAX FOR THE PVE LAB ..ottt sttt 9
|V N1 N TSR 10
VAT Y o o ST PP URPRPR 11
4.3 FUNCTIONS CALLED BY A WRAPPER......utetttettauresseesseesseessesssessesseesseesseesseessesnsesssesmeesseessesssessesnnssnnessessseensesnns 13
4.3.1 varargout=CheCKIN(METHOD Varargin)ccccesieeserrueieeseeseesseesseeseessssseesseessesssesssssssssssssssesseessesnes 13
4.3.2 varargout=CcheckOUt(METHOD,VArarginccccereieeerenirerieeeeseeesie st sre e 15
4.3.3 hh_localGUI=name_[0CalGUI(VArarginccceerereeerienenierieieeie st sre e s 16
434 varargout=name_MEhOA(VArarGiN)c.coeeererirereieeeriee ettt sttt be et sbe e b et s be e sbe e 17
4.4 REGISTRY FILE ASA TEXT FILE tiitttttiuteutetertestessestesneeseeeessesseseessesseeseansansessessessesssaseesensessessessessessesnsensessessesses 18
A5 THELOG FILE ASA TEXT FILE tttiutettiuteueeeesteseeseestesueeseesensesseseessesseeseensansessessessesssassensensessessessesseasesnsensensessesses 21
PROGRAMMING GUIDELINES.ottt ettt st se s e e nsesaeseesbesneeseeneenseneeseeneenes 21
VOCABULARY ettt ettt sttt sttt et sttt 4 et be s e e st e ke s 2 e st e besa e st e b e s ee st e beseeneebeseeneebesaenesbeneenenteneene 21

[0 The PVEout project within the European 5" framework, NRU
T. Dyrby, 16-12-02 p. 2

PVE Lab

1 Introduction

One success criteria for the PVEout (Partial Volume Effect) project within the European 5
framework is to make a common interface for a product that can do a full partia volume
correction of a PET/SPECT scan using a high resolution MR scan.

At the Firenze meeting, Italy, mid November 2002, the partners agreed to make a proposal on
how the different methods in the PVE process could be integrated through a user-friendly graphic
user interface (GUI). Further, the partners agreed in using the Matlab program from MathWorks
Inc. for implementing the GUI.

A magor advantage using Matlab as platform is the non-dependency of the operating system
(Linux or Windows), the worldwide use of Matlab within medical community, and an easy way to
realize the GUI.

The Copenhagen group, NRU, would make the preliminary description. The result is given in the
following document where afull (preliminary) description on how an user friendly interface could
be realized, code be written and, different methods integrated. Further a proposed prototype of a
GUI is created in Matlab.

This document contain the following sections:

In section 2 an introduction is given on how the proposed GUI of the PVE Lab can look like.
Further there is a description on how a method is thought to be implemented in the PVE Lab. A
method is a program from one of the partners doing e.g. segmentation, registration or like.

Section 3 is a timetable which gives a guess of what to do and time to spend at the different
blocksin the PVE Lab. Here the meeting in Caen, January 2003, isimportant.

Then in section 4 is given an initiated syntax description of the different common functionsin the
PVE Lab.

Welcome to the idea of:

The PVE Lab

[0 The PVEout project within the European 5" framework, NRU
T. Dyrby, 16-12-02 p. 3

PVE Lab

2 ThePVELab

The PVE Lab consist of a main GUI that offer all the methods to do a PVE correction of a low
resolution PET or SPECT scan (functional image) given a high resolution MR scan (structural

image).

21 MainGUI
In Figure 1 is shown a proposed prototype of the user-friendly GUI made in Matlab. The GUI is

referred as the mainGUI. In section 2.1.1, 2.1.2, 2.1.3 and 2.1.4 a more detailed explanation is
found.

=10 x|

v i ool

[Segmentation]
12| [i 99|

lm[
13|] 1 20|

[PVE corvection|
|mebhad1 "l . ﬂl

Figure 1 Proposed prototype for a main GUI for the PVE Lab where the user-friendly interface is a basic
requirement. The main GUI consists of: Progress window, wher e the different methods can visualize results.
Tasks are shown with numbers (1,2,3 and 4) as Registration, Segmentation, Atlas and PVEcorrection.
Different Methods can be selected in each task as the case for the registration task. Play button activate actual
task and glasses button show the result in the progress window. Information bar is where information can be
given to theuser. The Menu consists of File, Start, Tool, View and Help.

[0 The PVEout project within the European 5" framework, NRU
T. Dyrby, 16-12-02 p. 4

PVE Lab

2.1.1 Proposed menus

File Stat Tools View Help possibilities, more can be added.
Load MR — Name of loaded MR and SPECT/PET
Load FET/SPECT scan are shown at the top of the
— widow.

Save as. . . y '|

m Start menu: Run a sequence of all tasks (registration, segmentation etc.)

Bt 334 |—l with chosen methods or load and run a recorded macro.

R un macro....
- -

Tods Vi Heb Tool menu: Chose a PET simulation instead of a real PET scan. Other
PET Simulafion. I additional tools can be added.

View Help View menu: Different methods can be used for viewing the result of MR,
30 Browse PET or SPECT scan after atask or PVE correction.
20 Browse
|nepect crs

2.1.2 Proposed task

]mmmn l . Task and Methods: A task is e.g. registration, segmentation
i Atlas and PVEcorrection. A PVE correction consists therefore
| __ ﬂ S | of a sequence of tasks. In each task a method can be chosen

| between one or more available methods. In the registration
task there e.g. exist four different methods: 110, 1SP, SPM99
or AIR. In this case the 110 method is chosen.

0 View result: Opportunity to view result from given task. The result can be
;l viewed in the progress window.

k= Run Task: Opportunity to run only a given task with chosen method.

[0 The PVEout project within the European 5" framework, NRU
T. Dyrby, 16-12-02 p.5

PVE Lab

2.1.3 Proposed Progress window

Progress window: A method
can show results in the main
GUI ‘on the fly’ or when
finished. Both plots and
images can be shown in the
progress window. A handle
will be given to the started
method.

Progress window

2.1.4 Proposed information bar

Information bar: User or log information
Infarmation bar (infokar) can be received in the information bar.
The infobar can also be used as an online
help menu.

2.2 Behind PVE Lab

The success and stability of a program, as the PVE Lab, is both defined by the mainGUI as the
proposed prototype in Figure 1 and the structure of the code behind the mainGUI, shown in
Figure 2. The basic idea of the code structure behind the PVE Lab is to split apart the GUI code
and working code. The GUI hasto interface to the user and give a good overview of the PVE Lab,
its possibilities and the state in a PVE correction process. The working code is for specialists and
includes code from methods doing the segmentation, reslicing etc. Further, code that handle the
set-up of the methods and controlling the sequence of a PVE correction process will be working
code.

221 Main- andlocaGUI

In the PVE Lab there exist two types of GUI: The mainGUI and the local GUI.

The mainGUI represent the PVE Lab (Figure 1) and reacts on an action, such as a pressed button
or selection of amenu. When an action is registered a matched callback functionis caled. Thisis
seen as the Actionname_callback in the flow diagram, Figure 2. If exist the Actionname_callback
call a wrapper that match the chosen method, see Figure 2. The idea of a wrapper is to shield a
method from other methods and GUIs. This should make it easier to overview the code because
the functions is expected to have a limited size and force the programmer to write structural and
general code. In thisway it should also be easier to track down failures/problems and adding new
methods. Inside each wrapper code written for each method is called.

The localGUI is designed for a given method and therefore only exist within the wrapper, as
shown in Figure 2. The locaGUI has the possibility to send plots or images to the progress
window and text to the infobar in the mainGUI. Further it can act as a configurator with its own
user interface, or as a two-way communication link between the user and a manual method as
when registration two images. It should be noted that whether alocalGUI is created is a decision
for the programmer of the method.

[0 The PVEout project within the European 5" framework, NRU
T. Dyrby, 16-12-02 p. 6

PVE Lab

2.2.2 CheckIn, Checkout and the registry file

Working code is code without any GUI as the case for methods doing e.g. the segmentation or
the reslicing. The methods are (typically) programmed by the designer of the given agorithm and
Is placed within awrapper, as shown in Figure 2.

The heart of the PVE Lab is the two working code functions checkin and checkOut, see Figure 2.
The checkIn function is controlling the parameters for a given method before it is called e.g. if
files are available. Further it checks whether a method must be executed at the given state in a
PVE correction process or not. If not the wrapper is forced to return to the mainGUI. The
checkin function reads a registry file to get information upon the actual state of the PVE
correcting process. The stored information in the registry file could be chosen methods, path,
input output files and etc. Further the registry file keeps information needed for a method to be
initialised. The registry file could be a text file, then it always can be read and edited with a
normal text-viewer.

The checkOut function is called when a method has finished its work, see Figure 2. The function
updates the registry file so the next state in the PVE correcting sequence can be executed. Further
it should cleanup used memory to avoid memory leak, and if the localGUI is used it control that it
Is shutdown correctly.

2.2.3 Macrofile

A macro file gives the possibility to repeat a recorded PVE correction sequence. The macro fileis
recorded by saving the functions and arguments of activated callback functions in a PVE
correcting sequence. It should be possible for the user to load and execute a recorded macro file
from one of the menus in the mainGUI see section 2.1.1.

The macro file should be atext file, then it always can be read and executed by Matlab.

224 Logfile

Thelog file saves all necessary information of functions call that can be used to track down
failures or see activated functions. The log is meant to be placed within the wrappers.

It would be preferred that the macro file is atext file, then it always can be read and edited with a
normal text-viewer.

2.25 Common functions for the PVE Lab

To generalise the code both the checklin and checkOut functions are common for all wrappers.
This include functions reading and writing to the Log, Registry and macro file.

[0 The PVEout project within the European 5" framework, NRU
T. Dyrby, 16-12-02 p. 7

PVE Lab

mainGLU

progressilindow Infabar

S

Macro file

wie i

B read
7 e
/ / Log file

Actionname_callback

.

name_wrapper

drzw

Registry fil
" Redistryfile

checklin

l

lacal Ul

1

narne_rmethod

!

checkOut

wrie

Figure 2 Basic flow diagram of the PVE Lab. When activation (e.g. button pushed) is detected in the mainGUI
a given callback function and then a given wrapper is called. The wrapper shields the following function from
the mainGUI except a handle to the progress window where to draw graph or images, and a handle to the
Infobar where to write information. Extern files are Log file where log information are stored, a registry file
that holdsinformation on the status of the actual PVE correcting process and a macro file so a PVE correction
sequence can be repeated.

[0 The PVEout project within the European 5" framework, NRU
T. Dyrby, 16-12-02 p. 8

PVE Lab

3 Timetable

Thistimetableis only arough guess of time to spend at the different blocksinthe PVE Lab. It is
thought that at the proposed meeting in Caen january 2003 the partners will agreein afinalised
timetable of the PVE Lab and the blocks containing it.

Caen January, 19.-20.th 2003:
Feedback: New ideas, define and split the project into blocks. Discuss milestones on each
block.

Preliminary, what to do and app. time to spend:

MainGUI: (1.5 month)
Make a design of the PVE Lab (aproposed is given), define names of variables and realise
it.

Checkln and checkOut: (app. 2.5 months or more)
Two general functions -> Very important to be well defined. Which input/output
arguments should be used. How should the registry file be designed so it can full fill the
demand from the two functions. The design is very depended upon the input/output
specification of the different methods by the individual partner.

LocalGUI: (0-1.5 months)
GUI for the individual methods. How did the partner intent the GUI to look like and what
should be possible in the localGUI: Configuration, only information or a two-way’ed
communication between the local GUI and the method?

Individual methods from the partners: (0.5 month)
Detailed description of input and output arguments.

[0 The PVEout project within the European 5" framework, NRU
T. Dyrby, 16-12-02 p. 9

PVE Lab

4 |nitiated syntax for the PVE Lab

41 MainGUI

Description:
The mainGUI does a callback when activation is registered in the PVE Lab. Activation is

defined as pushing a button, selecting a menu or like. Each activation is connected to a
callback function which does nothing but pass arguments to a specific wrapper.
Syntax: (standard in Matlab ver 6.1 and later)

nane_cal | back(h, eventdata, handl es, varargin)

NOTE: The ‘name’ is user defined, but * _callback’ is Matlab defined.

Arguments:

* h: Cdlback for object's handle (structure).
* event dat a: Reserved for future use by Matlab.
* handl es: Structure containing handles of all componentsin the mainGUI.

e varargin = [argl,arg2,..,argN:
argl, arg2, .., ar gN: Future or user defined input arguments

Calling:
A specific wrapper

External call:

Pseudo-code:
Call a wrapper
Return to mai nGUI

[0 The PVEout project within the European 5" framework, NRU
T. Dyrby, 16-12-02 p. 10

PVE Lab

4.2 Wrapper
Description:
A wrapper is a function that interfaces between the mainGUI (through a callback) and a
given method. The wrapper takes care of the initialisation of the method, starting up the
localGUI if needed and afterward cleaning up before returning to the mainGUI.

ntax:

var ar gout =nanme_wr apper (var ar gi n)

name_wr apper : ‘name’ is user defined but should be closely related to the name of the
following task. *_wrapper’ is predefined.

Arguments:
varargi n = [hh_handl es, command, argl, arg2,..,argN:

Cdling:

hh_handl| es: Structure containing handles of all componentsin the mainGUI.

command: (more argumets can be added...)

check_St at us: Viatheregistry fileis checked if the situation is correct

run_Met hod: Run given method
run_Met hodShowResul t : Run given method and show result
kill _Local GU : Kill locaGUI after agood property

no_Local GUl : Run method without local GUI use default parameters

al | _Local GUJI : Let the progress window use al the mainGUI

argl, arg2, .., ar gN: Future input arguments

varargout =[status,argl,..,argN:

status: (more states can be added...)

Run: Method is checked-in

err_Regi stry: Can'tfindregistry file

err_infile: Can'tfindinputfile

err_outfile: Can'tfindoutput file

err_met hod: Can'tfind program

err_state: Wrong state e.g. segmentation before registration
| ocal GUI _active: GUIlisactive

argl, arg2, .., ar gN: Future input arguments

var ar gout =checkl n(hh_handl es, var ar gi n)

hh_I| ocal GUI =name_| ocal GUI (var ar gi n)

var ar gout =name_net hod(hh_I ocal GUI , var ar gi n)
var ar gout =checkQut (METHOD, var ar gi n)

An ot her wr apper (METHOD, var ar gi n)

Extern call:

Pseudo-code :
Check-in given method and return if check-in is not possible.
If needed, start up localGUI for given method
Call and initialise method and run it

[0 The PVEout project within the European 5" framework, NRU
T. Dyrby, 16-12-02

p. 11

PVE Lab

If exist close local GUI

Check-out the method by updating the registry file
Cleanup before return to mainGUI

If wanted call an other wrapper

[0 The PVEout project within the European 5" framework, NRU
T. Dyrby, 16-12-02

p. 12

PVE Lab

4.3 Functions called by a wrapper

Below is ashort description of the functions used by the wrapper, what they are thought asin- and
out put arguments and function.

var ar gout =checkl n(METHOD, var ar gi n)

hh_| ocal GUI =nane_I| ocal GUI (var ar gi n)

var ar gout =nane_net hod(hh_| ocal GUI , var ar gi n)
var ar gout =checkQut (METHOD, var ar gi n)

An ot her w apper (METHOD, var ar gi n)

4.3.1 varargout=checkIn(METHOD,varargin)

Description:
A wrapper is checked-in if actual state in the PVE correcting process is valid and needed

files exist. This is known through a predefined order of states. The state of a process is
stored in the registry file. If an error is detected a wrapper will not be able to checked-in
and may return to the mainGUI and an error message is send to the user.

ntax:
var ar gout =checkl n(METHOD, var ar gi n)

Arguments:
e ETHQOD: Label (constant) of the method checkingin

e varargin=[hh_handl es, command, argl, .., argN|
hh_handl| es: Structure containing handles of all componentsin the mainGUI.

command: (more argumets can be added...)
check_St at us: Via registry file the situation is checked for given
method.
run_Met hod: Run given method
r un_Met hodShowResul t : Run given method and show result
kill Local GU :Kill locaGUI
no_Local GU : Run method without local GUI use default parameters

argl, arg2, .., ar gN: Future input arguments

e Varargout =[st at us, MR n, MRout , PETi n, PETout , h_mai nfi g,
h_i nfobar, argl, .., argN|

st at us: (more states can be added...)
Run: Method is checked-in
err_Regi stry: Can'tfindregistry file
err_infile: Can'tfindinputfile
err_outfile: Can'tfindoutput file
err_met hod: Can'tfind program
err_state: Wrong state e.g. segmentation before registration
MRin: Filename with path to input MR
MRout: Filename wth path to output M
PETin: Filenane with path to input PET/ SPECT

[0 The PVEout project within the European 5" framework, NRU
T. Dyrby, 16-12-02 p. 13

PVE Lab

PETout: Filename with path to output PET/ SPECT
h_pr ogr essW n: Handle to the progress window in the mainGUI
h_i nf obar : Handle to information bar in the mainGUI

argl, arg2, .., ar gN: Future input arguments
Calling:
External call:
Registry file: Text (or other) file with information of path and status of aPVE
correcting process.
Log file: Text (or other) file with log information of the PV E correcting process.
Pseudo-code:

Check-in given method
Return with status if check-in succeeds.
If not succeed return an error

[0 The PVEout project within the European 5" framework, NRU
T. Dyrby, 16-12-02 p. 14

PVE Lab

4.3.2 varargout=checkout(METHOD,varargin)

Description:
Before a wrapper can return to the mainGUI or calling an other wrapper it must be
checked-out. The function updates the registry file with information about the executed
method and the state in the PVE correcting process. If an error is detected the registry file
is not updated before returning to the mainGUI further an error message is send to the
user.

ntax:
var ar gout =checkQut (METHOD, var ar gi n)

Arguments:
e IVETHQOD: Label (constant) of the method checkingin

e Varar gi n=[command, MR n, MRout , PETi n, PETout , h_pr ogr essW ndow
, h_infobar,argl, .., argN
st at us: (more states can be added...)
Run: Method is checked-in
err_Regi stry: Can'tfindregistry file
err_infile: Can'tfindinputfile
err_outfile: Can'tfindoutput file
err_met hod: Can'tfind program
err_state: Wrong state e.g. segmentation before registration
VR n: Filename with path to input MR
MRout : Filename with path to output MR
PETi n: Filename with path to input PET/SPECT
PETout : Filename with path to output PET/SPECT
h_progr essW ndow. Handle to the progress window in the mainGUI
h_i nf obar : Handle to information bar at the mainGUI
argl, arg2, .., ar gN: Future input arguments
e VarargQut=[argl,..,argN
argl, arg2, .., ar gN: Future input arguments

Calling:
External call:
Registry file: Text (or like) file with information of path and status of a PVE correcting
Process.
Log file: Text (or like) file with log information of the PVE correcting process.
Pseudo-code :
Check-out given method.
If no error update the registry file
If localGUI is used, restore mainGUI and kill/shout down the local GUI

[0 The PVEout project within the European 5" framework, NRU
T. Dyrby, 16-12-02 p. 15

PVE Lab

4.3.3 hh_locaGUI=name_|oca GUI(varargin)

Description:
Interaction with a user can be done by a localGUI. The locaGUI can be used to inform
about a process of a given task (e.g. segmentation), or it can be used as a 2-way
communication in the case of a semi-automatic or amanua method (e.g. registration).
A given localGUI is typical designed/programmed by the designer of the given method.

ntax:
hh_| ocal GUl =nane_I| ocal GUI (var ar gi n)
Arguments:
e varargi n=[command, h_mai nfi g, h_infobar, argl,..,argN

command: (more states can be added...)
check_St at us: Via the registry file the situation is checked for given
method.
r un_Met hod: Run given method
run_Met hodShowResul t : Run given method and show result
kill _Local GUI : Kill locaGUI
no_Local GUl : Run method without local GUI use default parameters
h_mai nfi g: Handle to mainfig in the mainGUI
h_i nf obar : Handle to information bar at the mainGUI
argl, arg2, .., ar gN: User defined input arguments
 hh_l ocal GUl : A handleto astructure of handles of available buttons, edit boxes,
List box etc in the loca GUI.

Calling:
External cal:

Pseudo-code :
Set up a GUI interface, which fits a given metod.
Return handles of the localGUI

[0 The PVEout project within the European 5" framework, NRU
T. Dyrby, 16-12-02 p. 16

PVE Lab

4.3.4 varargout=name_method(varargin)

Description:
A method is a program performing e.g. segmentation; registration or loading and
converting between different file formats. The given method can be any executable,
Matlab routine or MEX function with given input and output arguments.

Requirements:
1) MR-, PET- and SPECT shall be read and written in the analyze format.
2) Run on both the Linux and the Windows platform.

ntax:
var ar gout =nanme_net hod(var ar gi n)
Arguments:
 varargin=[hh_l ocal GJ, h_I nfobar, argl, arg2, .., argN|
hh_| ocal GUI : Handlesin localGUI
h_i nf obar : Handle to information bar at the mainGUI
argl, arg2, .., ar gN: User defined input arguments (in-/out filenames)
 varargout=[argl,arg2,..,argN
argl, arg2, .., ar gN: User defined input arguments (in-/out filenames)
Caling:
User defined!!
Pseudo-code:

Defined by the designer of the actual method how to solve a given method.

[0 The PVEout project within the European 5" framework, NRU
T. Dyrby, 16-12-02 p. 17

PVE Lab

44 Registryfileasatextfile

Description:
Theregistry fileis atext file and contains status on finished methods in the PVE
correction process and is read/written by wrappers, see Figure 2.
The name of the registry file is connected to the structural file (MR scan) with the
extension *.reg.
The name of the registry file is written into the header of the analyze file format for the
given structural file. This gives the possibility to continue a process later on or to track
information upon which methods, structural and functiona files are used in a given
process.

ntax:
<work directory><separator><argument><comment><CR>
<result directory><separator><argument><comment><CR>
<task_order><separator>< task _1><space> ... <space>< task _N><CR>

(For each task:)

<method><CR>
<info_ task ><separator><argument><space><argument><space>...<comment><CR>
<info_ task ><separator><argument><space><argument><space>...<comment><CR>

<info_ task ><separator><argument><space><argument><space>...<comment><CR>

Arguments:
<separator>

‘.’ Separates commands and arguments

<work directory> (command, not case sensitive)
‘work_dir’ Directory containing input files can be either in the Linux- (*/’) or the
Windows (‘c:\..") way.

<result directory>(command, not case sensitive)
‘result_dir’ Directory containing result files generated under the PVE correction.
Can bein either in the Linux- (‘/’) or the Windows (‘c:\..”) syntax.

<task_order> (command, not case sensitive.)
‘task_order’ Expected order of/and tasksin registry file.

NOTE: It is possible that not listed tasks exist. Such atask or task are called part
task(s). In the converting task where file are loaded (below example) a two part
task are used: one that load and convert a functional file and one for the structural
file. In the registration task a part task do the reslicing is used.

<tak_1-N> (command, not case sensitive)
"name_task’ name of actual task followed by *_task'.

<info_task > (command, not case sensitive)
‘input file' zero or more strings for input file (no path)
‘output file' zero or more strings for input file (no path)
‘method’ string for actual method (program) used

[0 The PVEout project within the European 5" framework, NRU
T. Dyrby, 16-12-02 p. 18

PVE Lab

‘varargin’ zero or more input arguments for actual task

‘varargout' zero or more output arguments for actual task

‘start time’ mm.dd.ss start time for task (one argument)

‘end time’ mm.dd.ss end time for task (one argument)

‘date’ dd.mm.yy date of process (one argument)

‘log file' string for log file

‘user_defined_1* zero or more different user defined user defined strings

‘. User_defi ned_n* zero or more different user defined user defined strings

<argument> (case sensitive)
Sring (no spaces)

<space>
ONe Or more spaces

<comment> = <%><string> (Not case sensitive.)
‘string’ User defined text

<CR>
New line

[0 The PVEout project within the European 5" framework, NRU
T. Dyrby, 16-12-02

p. 19

PVE Lab

Example:
In a registration process of a MR and PET scan the following task and order has to be

executed:

WeORBBo registry file start 98088808080

%header information
Work _dir: /depot/scans/ Y%where input files are found
result_dir: /depot/scans/resultA/ %here to place output files

Task_order: converting registration reslicing segnentation atlas
(simulation) PVEcorrection

% nformati on on which tasks are done and their argunents
converting task %his is a main task that’s use
% oadTar get _taks and | oadSource_t ask

| oadTarget _task % part task Loading MR files

input file: Mnane.sfh % Loadede in sinple fornmat

output file: c_MrRname. hdr % | ndicate converting

met hod: Convert sf2Anal yze % Program used to solve the task
varargin:

var ar gout :

start tinme: 02.13.00 %h. nm ss

end tine: 02.15.00 %h. mm ss

date: 18.11.02 %ld. mmyy

log file: MRnane.log Where to | og call backs

| oadSource_taks % part task | oadi ng PET/ SPECT fil es
input file: PETnane. hdr %

output file:

met hod: | oadRES %pr ogram used to sol ve the task
var ar gi n:

var ar gout :

start time: 02.13.00 %h. mm ss

end tine: 02.15.00 %h. mm ss

date: 18.11.02 %ld. mrmm yy

log file: MRnanme.log %Where to | og call backs

registration_task %his is a main task that’s use
% eslicing_task

input file: c_MRname. hdr c_PETNane. hdr
output file:
nmet hod: 110 % ane of method

varargin: c¢_MRnane. hdr c¢c_PETname. hdr %ist of argunents

varargout: A % he rigid body transformation

start tinme: 04.02.22 %h. nm ss

end tine: 04.24.22 %h. mm ss

date: 18.11.02 %ld. mrmm yy

log file: MRnanme.log %Where to | og call backs

other: c¢_Mnane.air %Wnfo of registration matrix/info saved in AR
f or mat

reslicing_taks % part task Reslicing

input file: c_PETnane. hdr

output file: rc_PETnane. hdr

met hod: interpol 3 %ane of sel ected task
varargi n: c_PETnane. hdr A %ist of argunents
varargout: rc_PETnane. hdr %ist of arguments
start tinme: 04.02.22 %hh. nm ss

end tine: 04.24.22 %h. mm ss

date: 18.11.02 %ld. mmyy

log file: MRnane.log Where to | og call backs

WeORBBo regi stry file end %0808880080

[0 The PVEout project within the European 5" framework, NRU
T. Dyrby, 16-12-02 p. 20

PVE Lab

45 Thelogfileasatextfile
Thelog fileis atext file and contain logged information of activation in the PVE Lab by copying

the callbacks into the log file. The log file can be used both as a guideline for new users, to watch
problems in the process line or as aMacro if the same process has to be repeated.

The name of alog fileisthe same as the MR file name added with the extension *.1og.

Syntax:
<callback no. 1><CR>

<calback no. 2><CR>

<calback no. n><CR>

5 Programming guidelines

* Inthe same function do not mix GUI code and other code!
e Think of the memory been used. Clean up after use!
» Keep things simple this often makes speedy methods!
* Avoid global variables!
* Writethe code, asit should be checked/used by others!
e Comments and introduction in afunction is a must!
* Writing handles:
h_name: a handle to a structure of variables (pointer)
hh_name: a handle to a structure of handles (pointer to pointer)

6 vocabulary
Task
Segmentation, registration etc.
Method
A program that’ s realize a given task, e.g. different methods to do aregistration
LocalGUI
GUI for agiven method and is should be designed by the designer behind the method
MainGUI
GUI for the PVEIlab
Wrapper
Function that interface between the mainGUI a given method.
Matlab
Platform of the PVElab, isindepended of operation system
Varargin/outs
Input and out variables between functions. The number is specific for the individual
function

[0 The PVEout project within the European 5" framework, NRU
T. Dyrby, 16-12-02 p. 21

PVE Lab

Callback
Matlab do a callback when activation isregistered e.g. push button.

Progress window
Where atask can display process information (graphs or images) in the mainGUI.

Infobar
Where information of a method can be given to the user

handle
A ‘pointer’ to a given structure containing variables or handles. Here additional
information can be stored and changed after calling and before returning of callbacks.

Overloaded functions:

Functional file
Low resolution PET/SPECT scan in the analyze format

Structural file
High resolution MR scan in the analyze format consist of an header file (*.hdr) and image
file (*.imQ)

[0 The PVEout project within the European 5" framework, NRU
T. Dyrby, 16-12-02 p. 22

